Объединение компонентов в систему порой представляет собой весьма непростую задачу. Сложность конструкции системы зависит от следующих факторов:

  • профессионального уровня проектировщика;
  • разработки и внедрения нового оборудования;
  • уровня и качества комфорта, требуемых потребителем;
  • размера объекта;
  • величины среднего КПД системы, который должен быть достигнут.

Обращенное на юг окно в сочетании с тепловой массой здания и изолирующими ставнями является потенциально самой простой и в то же время наиболее удобной системой солнечного отопления. Также несложными являются термосифонные воздушные коллекторы или солнечные водонагреватели. В ту же категорию попадают:

  • «Скайтерм» Г. Хэя;
  • стена из цилиндров С. Баэра;
  • стена Тромба-Мишеля.

Простые системы нередко достаточно эффективны, кроме того, при продолжительном сроке службы они требуют меньшего расхода строительных материалов и меньше энергии для своего возведения, эксплуатации и ремонта.

Помимо вышеприведенных примеров простейшая система солнечного отопления использует коллекторы, которые работают только во время солнечного сияния и когда здание нуждается в тепле. Такие коллекторы можно устанавливать в холодное время года на открытых площадках около дома, а летом демонтировать. Их можно прикреплять к стенам и крышам существующих зданий. В любом случае воздух из зданий подается в коллектор, нагревается солнечными лучами и затем снова поступает в помещение.

Вентилятор включается по сигналу разности двух температур. В процессе работы системы датчик, посылающий этот сигнал, определяет, светит ли солнце и достаточно ли нагрет коллектор, чтобы нагреть воздух до нужной температуры; второй прибор определяет, нуждается ли помещение в тепле или нет. Этот прибор должен быть настроен на верхний предел термостата, поскольку солнечное тепло с воздухом должно поступать в помещение тогда, когда его температура достигнет такого уровня, чтобы воспользоваться преимуществом использования энергии солнца, когда оно светит (естественно, этот процесс может осуществляться вручную путем простого включения или выключения вентилятора). Поскольку в этом режиме работы не предусматривается аккумулятора тепла, то здание само должно выполнять функцию контейнера теплоаккумулятора. Таким образом, оно должно нагреваться до такой температуры, которую могут выдержать находящиеся в нем люди. Чем массивнее здание, тем больше тепла оно может запасти, тем дольше оно может обходиться без тепла после захода солнца или появления облачности и тем выше будет общий КПД этой простой системы. Покрытые землей и подземные здания с изоляцией, находящейся между бетоном и грунтом, очень близки к этим простым системам, поскольку массивные бетонные конструкции хорошо аккумулируют тепло.

Система следующего уровня сложности накапливает солнечное тепло в аккумуляторе. Если помещение нуждается в тепле, хотя солнечная энергия на здание поступает, то включается накопившая тепло отопительная система. Однако в идеале приток солнечного тепла через окна должен удовлетворить потребность в отоплении и во время работы коллектора. Дублирующая отопительная система совершенно отделена от системы сбора и распределения солнечного тепла в целях упрощения всего комплекса. Когда солнца нет и аккумулятор «заряжен», потребность дома в тепле удовлетворяется в первую очередь за счет солнечного аккумулятора. Если этого недостаточно, то включается дублирующая система отопления. На рис. 1 кратко описываются 4 режима работы воздушной системы отопления. Элемент, обозначенный как «отопитель», независим от системы солнечного отопления и может работать на жидком топливе, газе, электричестве, дровах или любом другом топливе.

 Различные режимы работы простой воздушной системы отопления:

Рис. 1. Различные режимы работы простой воздушной системы отопления:

а — коллектор нагревает аккумулятор; б — аккумулятор нагревает помещение; в — отопитель нагревает помещение, солнце нагревает аккумулятор; г — отопитель нагревает помещение, солнце отсутствует, тепло не аккумулируется; 1 — жилое помещение; 2 — аккумулятор; 3 — коллектор; 4 — отопитель; A — коллектор — аккумулятор — коллектор: светит солнце, коллектор горячее аккумулятора; B — аккумулятор — здание — аккумулятор: коллектор не подводит тепло к аккумулятору (нет солнца или аккумулятор теплее помещения); C — коллектор подводит тепло к аккумулятору (светит солнце) и помещение нуждается в отоплении; D — коллектор не работает (нет солнца), в аккумуляторе недостаточно тепла.

Система усложняется по мере того, как предпринимаются попытки объединить все элементы. Например, в больших установках в целом нежелательно иметь 2 системы подвода тепла: одну для солнечного, а другую для дублирующего. Объединение этих двух систем в одну систему воздуховодов (например, для систем принудительной подачи теплого воздуха) требует установки демпферов и вызывает другие сложности с управлением, но, в конечном счете, может снизить стоимость используемой тепловой энергии.

На рис.2 приведен пример отдельной системы подвода тепла с воздухом в качестве теплоносителя. Если через 10 мин после начала работы температура аккумулятора не достигает заданной термостатом величины, то включается отопитель. При работе коллекторов нагретый воздух поступает только в аккумулятор, если в нем нуждается само здание.

Система солнечного отопления дома

Рис. 2. Система солнечного отопления дома «Денвер дизайн»:

1 — теплораспределительный канал; 2 — водонагревательный змеевик; 3 — бак с горячей водой; 4 — демпферы; 5 — опорный экран; 6 — вспомогательный нагреватель; 7 — мотор вентилятора; 8 — насадка аккумулятора; 9 — гравий; 10 — тепло из аккумулятора; 11, 18 — под полом; 12 — аккумулированное тепло; 13 — фильтры; 14 — магистраль горячего воздуха; 15 — коллектор; 16 — стояк; 17 — возврат холодного воздуха.

Различные заслонки и демпферы, устанавливающие разные режимы работы, часто располагаются вблизи друг от друга и подвержены давлению, создаваемому вентиляторами. Поэтому, они должны быть сконструированы таким образом, чтобы давление воздуха заставляло их плотно закрываться во избежание утечки воздуха.

Главным образом из-за стоимости и необходимости в упрощении работы количество воздуховодов, заслонок и их приводных механизмов должно быть как можно меньше. Следует рассчитывать кинематику каждой заслонки так, что когда в определенном режиме работы системы требуется ее закрыть или открыть, то движение воздуха, создаваемое вентилятором в данном режиме, соответственно приводило бы ее в движение. Однако если для привода заслонок требуются механизмы, то они должны располагаться рядом, для того, чтобы один механизм приводил в движение несколько заслонок одновременно. Это обычно означает, что некоторые воздуховоды должны проходить рядом с местами расположения заслонок, а они, в свою очередь, должны размещаться в линию, чтобы поворачиваться вокруг одной и той же оси. Привод заслонок может открывать один воздуховод и одновременно перекрывать другой.